A Simple Compact Fourth-Order PoissonSolver on Polar Geometry

نویسندگان

  • Ming-Chih Lai
  • MING-CHIH LAI
چکیده

We present a simple and efficient compact fourth-order Poisson solver in polar coordinates. This solver relies on the truncated Fourier series expansion, where the differential equations of the Fourier coefficients are solved by the compact fourthorder finite difference scheme. By shifting a grid a half mesh away from the origin and incorporating the symmetry constraint of Fourier coefficients, we can easily handle coordinate singularities without pole conditions. The numerical evidence confirms fourth-order accuracy for the problem on an annulus and third-order accuracy for the problem on a disk. In addition, a simple and comparably accurate approximation for the derivatives of the solution is also presented. c © 2002 Elsevier Science (USA)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Order Compact Scheme Combined with Multigrid Method for Momentum, Pressure Poisson and Energy Equations in Cylindrical Geometry

A higher-order compact scheme combined with the multigrid method is developed for solving Navier-Stokes equations along with pressure Poisson and energy equations in cylindrical polar coordinates. The convection terms in the momentum and energy equations are handled in an effective manner so as to get the fourth order accurate solutions for the flow past a circular cylinder. The superiority of ...

متن کامل

Fast Direct Solver for Poisson Equation in a 2D Elliptical Domain

In this article, we extend our previous work (M.-C. Lai and W.-C. Wang, Numer Methods Partial Differential Eq 18:56–68, 2002) for developing some fast Poisson solvers on 2D polar and spherical geometries to an elliptical domain. Instead of solving the equation in an irregular Cartesian geometry, we formulate the equation in elliptical coordinates. The solver relies on representing the solution ...

متن کامل

Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry

The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...

متن کامل

A Compact Fourth Order Scheme for the Helmholtz Equation in Polar Coordinates

In many problems, one wishes to solve the Helmholtz equation in cylindrical or spherical coordinates which introduces variable coefficients within the differentiated terms. Fourth order accurate methods are desirable to reduce pollution and dispersion errors and so alleviate the points-per-wavelength constraint. However, the variable coefficients renders existing fourth order finite difference ...

متن کامل

Islamic Architects and Islamic Mathematicians Artistics Meeting, To Utilize Geometry in Architecture The period under study is the fourth to the eleventh AH

In specialized topics of aesthetics, structure and function, the buildings of Islamic architecture in Iran during certain periods, show the strong presence of intellectual sciences such as mathematics. The use of geometry as a part of the science of numerical mathematics, which in its intellectual position has complex calculations, indicates the connection of Islamic architects with the mathema...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001